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FIA ESTIMATION IN THE NEW MILLENNIUM1

Francis A. Roesch2

Abstract—In the new millennium, Forest Inventory and Analysis (FIA) will deliver most of its database information
directly to the users over the Internet. This assumption indicates the need for a GIS-based estimation system to support
the information delivery system. Presumably, as the data set evolves, it will free FIA and the users from exclusive
estimation within political boundaries.

A data set of basal area measurements from a survey unit in Georgia is used to simulate one that might have been
obtained had an annual inventory been conducted over a 5-year time interval. The simulated data set was used to
investigate various estimators and any potential spatial correlation of basal area. The presence of spatial correlation,
coupled with a desire to fulfill user needs to obtain estimates over individually defined elements of the spatial-temporal
cube, forms the basis for an argument that a real-time GIS-based estimation system should be developed as the main
information delivery vehicle for FIA.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Mathematical Statistician, USDA Forest Service, Southern Research Station, Asheville, NC 28804.

INTRODUCTION
As we approach the next millennium, it is apparent that we
cannot consider how we might improve Forest Inventory
and Analysis (FIA) estimation without first asking: “What are
the major products of FIA likely to be?” That is, through
which routes will we deliver the bulk of our inventory
information? Most likely, we will deliver most of our informa-
tion directly from the database over the Internet, not in the
paper reports that have historically taken about 2 years to
publish. To use the Internet effectively and efficiently, we
must build an estimation system to adequately support the
delivery of information that is more sensitive to the needs of
its users.

Insights into the needs of these users can come from
myriad sources, but none so compelling as the reports of
the two Blue Ribbon Panels, BRP I (Anonymous 1992) and
BRP II (Anonymous 1998). These panels were formed
specifically to provide suggestions for improving the FIA
program. For instance, a concern over the potential misuse
of FIA data resulted in the following statement from BRP I:
“To maintain the credibility of the program, FIA, working
together with experienced biometricians, must issue clear
direction on the scientifically valid uses of FIA data without
creating disincentives to innovation and advancement of
technology” (Anonymous 1992).

The best way to communicate scientifically valid uses of the
information is to develop a system that can provide esti-
mates in as many usable forms as possible. In this
manner, FIA will provide scientifically defensible mecha-
nisms from which to make estimates. FIA may still chal-
lenge inferences drawn from the estimates, but if the
estimates themselves are sound, the scientific community
can debate the validity of various resulting inferences.

The second Blue Ribbon Panel reiterated and expanded
the recommendations of the first in one specific recom-
mendation:

“Better analysis is necessary for improving customer
service. More analysis of FIA data would be useful in
improving and increasing customer service. While some
FIA customers have the capability and inclination to analyze
raw data themselves, other customers rely on outside
sources to summarize and analyze the data for them”
(Anonymous 1998).

In addition, the second Blue Ribbon Panel charged FIA to
“Produce the most current resource data possible.”

The overwhelming consensus among panel members
was that timeliness of resource data is of paramount
importance:

“Strengthening of Forest Service research and expertise in
Geographic Information Systems (GIS), and collaboration
with other agencies, could deliver immediate benefits. We
urge the Forest Service to:

“Reallocate funding within the Forest Service in order to
reach the goal of timely resource data established in the
first Blue Ribbon Panel report. Fully integrate GIS
technology into the inventory process. Aggressively support
and promote the annual inventory systems being
established in the North Central and Southern FIA units.
Based upon results from these efforts, establish a model
for annual inventory to be adopted nationwide” (Anonymous
1998).

To fully comprehend the needs of the users, we must first
identify those users. FIA users include State foresters,
university researchers, National Forest System employees,
Forest Service researchers, military bases, other govern-
ment and State agencies, forest industry, forestry consult-
ants, and members of conservation and environmental
groups. Their needs are as diverse as the groups them-
selves.
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The term “drill-down technology” refers to a database
feature that allows a user to view increasing levels of detail
as scale increases. It is used extensively in mapping
software and GIS packages to deliver the appropriate level
of information at varying scales. For example, if one were
interested in regional wood supply information, providing
individual tree-level data would not be very helpful. On the
other hand, region-level information provides little more
than background to a State forester interested in a particu-
lar county’s available forest resource. A resourceful user
can derive region-level information from tree level data from
the entire region. However, users are generally supportive
of programs that provide information in the most useful
forms and at the most appropriate scales. It is apparent
that the most efficient aggregator of FIA data into appropri-
ately scaled information will usually be FIA itself. Excep-
tions do occur with a few special-needs users.

Given the richness of the data that will be available from the
annual inventory design, and the power of existing GIS
systems, the user of FIA data should not be constrained by
boundaries in space or time that have been predefined by
FIA. However, given user-defined spatial and temporal
constraints, FIA should endeavor to provide estimates in
real time. These estimators should be available for as
diverse a set of needs as the data will allow. Certainly, the
data support investigations into forest amenities and
commodities at a wide range of scales, but they can also
provide insights into the contributions and effects of forests
in wide-ranging areas of interest. Some related areas
include studies of pollution, watersheds, and even human
behavior.

To increase the usefulness of our information, we must
incorporate all of the available improvements in user-
interface tools. As a minimum standard, the user should
not have to know any variant of Structured Query Language
(SQL). This requires that we provide the estimation system
in a user-friendly GIS environment.

To ensure the greatest utility of the data, FIA must provide
an estimation system robust to an unpredictable and
uncontrollable set of click events. This will compel FIA
statisticians to reach as deeply into their estimation toolbox
as any single previous effort has ever required. A com-
pletely different approach will be required if the user is
permitted to define areas of interest—say by digitization or
by map overlays—and time periods of interest rather than
be required to work within strictly defined boundaries in
space and time. Given the plethora of information available
in the data set, a truly robust system would often have to
use estimators that “reach out” to external data and other
information sources for support, rather than to rely solely on
the FIA data collected within the user-defined, spatial-
temporal limits. A GIS-based estimation system has to
provide the “best” estimators at any scale of interest within
the estimation range. For most attributes, the most inten-
sive scale in the estimation range for FIA data includes
areas the size of a large county. However, the relationship
of available information to the area delineated varies by the
size of the area relative to the sample, the variable of
interest, and the period of interest. Large areas require only

the usual sample estimates when sample sizes within the
area and period are adequate, while small areas require
the use of supplementary information from outside of the
area or period.

METHODS
Before an estimation system can be incorporated into a
production system, its individual components, as well as
the relationships between those components, must be
thoroughly tested. This leaves us with the problem of
testing a large, potentially complex, estimation system prior
to the availability of the data. The approach we used was to
manufacture a reasonably believable 5-year series of data
by projecting data from a single year backward and forward
1 and 2 years. The data from FIA’s Survey Unit 1 in Georgia,
collected in 1989 and 1996, were used to establish
individual-tree basal area projection equations, mortality
and harvest probabilities, and proportions by forest type,
dominant species, and age class. These functions were
then applied to the 1996 tree-level data to project it back-
ward 1 and 2 years and forward 1 and 2 years, simulating
tree data for 5 consecutive years on 2,353 plots. The survey
unit consists of 35 counties, which were grouped into 5
contiguous 7-county groups for part of this study. This data
set was considered to represent the “truth” for each of the
years 1994 through 1998. Figure 1 graphs the “true” mean
basal areas per acre. We define the “current truth” as the
state of this simulated population in 1998.

The sample plots for the FIA Annual Inventory sample
design are located in a systematic triangular grid consist-
ing of five interpenetrating panels. One panel is measured
each year for five consecutive years, after which the panel
measurement sequence reinitiates. If panel 1 was mea-
sured in 1998, it will also be measured in 2003, 2008, and
so on. Panel 2 would be measured in 1999, 2004, 2009,
and every five years thereafter.

To mimic the systematic FIA Annual Inventory design,
spatial coordinates of the plots were used to assign plots
to panels, a panel being a single year’s measurement.
Therefore, the simulated FIA Annual Inventory sample
consisted of approximately one-fifth of the plots for each
year.

A preliminary study investigated specific applications of two
general methods for combining the multiyear data from the
FIA annual inventory design to form current estimates for
small areas. The two general methods are (1) the simple
moving average estimator (MAE), and (2) a globally defined
mixed estimator (ME) applied locally. Two variations of the
mixed estimator method (ME1 and ME2) are compared to
each other as well as to the assumed default estimator
(MAE). Assume that one and only one full series of obser-
vations is available so that all five panels have been
measured once. “Current” is defined as the measurement
time of the last panel (panel 5).

MAE pools the latest five panels measured, under the
assumption that no time trend exists at the observed scale.
As some variables of interest will violate this assumption
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over the measurement interval, it is important to determine
valid applications of this simple estimator.

Modeling an existing temporal trend becomes important
when the objective is to estimate the time-specific value of
some forest attribute, e.g. current volume or basal area per
acre. When a temporal trend does in fact exist, MAE will
have the tendency to mask the very trends that the FIA
annual inventory design was intended to evaluate. There-
fore, we explored the mixed estimator because it can
recognize and efficiently utilize the time-series nature of the
five-panel sample.

If we seek the estimate for a variable at a specific time, let:

ijtX = the per-acre value observed at plot i  in county j

( =i 1,...,
jn , j = 1,...,J), and time t (t = 1,...,5),

ijtA = the area in acres sampled at plot i in county j

( =i 1,...,
jn , j = 1,...,J), and time t (t = 1,...,5), and

PA  = the fixed plot area.

When no time trend is present, the sample area weighted
mean for the five-panel series provides the best estimator
of a per-acre value (V):

     

1 1 1

1ˆ
jnT J

ijt

MAE ijt
t j i P

A
V X

A A= = =

= ∑∑∑

where:
.

We tested two variations of mixed estimation for current
basal area. Each variation applies global (survey unit)
results of the mixed estimation methodology to subareas
within the survey unit, under the assumption that the
sample will often be too small for a direct application of
mixed estimation to the subareas. In both variations, we
used mixed estimation at the survey unit level to choose
from the three simple models discussed by Van Deusen
(1999), and to find the maximum likelihood estimate of the
weighting parameter p. The models were (1) a straight line
with a slope of zero, (2) a straight line of any slope, and (3)
a quadratic. In the first variation (ME1), we fit the chosen
model and level of p at the lower levels (i.e. county and
county group). In the second variation (ME2), we fit the
chosen model at the survey unit level to predict an overall
    (a Tx1 vector described below, where T is the number of
years in the sample, usually equal to 5). This leads directly
to a simple updating vector 

   
,
 
found by multiplying the

inverse of each element of    by the fifth element of    .
Then:

where:

        a Tx1 vector of total area sampled at each time,

       a Tx1 vector of basal area estimates for each time,

      a Tx1 vector of ones, and

                          = a function that places a Tx1 vector       into
the diagonal of a TxT matrix of zeroes.

Figure 1—Survey unit “true” mean basal area per acre by year.
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We then evaluated the estimators for how well they
predicted the “true” county level and county group level
basal areas for 1998 from the 1994 to 1998 sample, under
a squared error loss function. Initially, we conducted a case
study yielding a unique solution for the moving average
estimator (MAE) and each variation of mixed estimation
(ME1 and ME2). The squared error calculated for these
methods is simply the mean of the squared difference of
each estimate by county and county group from the truth for
that county or county group.

Finally, we performed a simulation, assuming that spatial
correlation between plots was unimportant. The plots were
randomly rearranged 1,000 times and then grouped into
simulated, approximately equally sized, “counties.” We
varied the number of counties from 10 to 50 to see what
effects sample size would have on the ranking of the
estimation approaches. When the plots were grouped into
10 counties, there was an average of 235.3 plots in each
county, (actually 235 plots in 7 counties and 236 plots in 3
counties). At the other extreme, when there were 50
counties, there were 47 plots in 47 counties and 48 plots in
3 counties. We calculated the mean difference and mean
squared difference from the “truth” over the 1,000 random
arrangements of the 2,353 plots. We defined the “truth” as
the population mean of each simulated county at time 5.

The simulation results led to the suspicion that the as-
sumption of spatial independence between plots was
weak. Therefore, in an attempt to detect spatial trends, we
performed median polishes of the “true” population plot
data for 1998 aggregated at five different scales of a square
grid (50, 40, 30, 20, and 10 miles on a side). We conducted
the median polishes in the cardinal directions (north-south
and east-west). At two scales, a strong north-south trend
was indicated. The cell sizes for the first of these scales
were slightly larger than the average county size (a square
grid with 30 miles on a side), resulting in 31 filled cells. The
second scale was 20 miles on a side, resulting in 57 filled
cells. The results for 50, 40, and 10-mile grids are not
presented because they did not show any spatial trends.
Subsequent to the median polishes, we calculated the
variograms for the 30 and 20-mile grids of both the original
data and the residuals.

RESULTS
For the case study, table 1 shows the mean difference from
the truth over all counties and county groups for MAE, ME1,
ME2, and the mean of panel 5 (P5M). Table 2 shows the
corresponding mean squared differences. The panel 5
mean is included because panel 5 is the portion of the
sample that observes only the population partition of
interest (that is, tree basal areas during 1998). In the case
study, the mean difference is not a true measure of model
bias, but can be an indication of model bias. Note that two
of the estimators have roughly the same mean difference at
both the county and county group levels, leading us to
suspect that the respective levels may reflect the true level
of bias in these estimators. Of these two, MAE shows the
largest absolute difference. Due to the increasing trend in
the variable of interest, all values for the moving average
were low. The magnitude of the absolute mean difference

is close to zero for ME2. When going from the county to the
county group level, the large reduction in magnitude of
absolute mean difference for the other two estimators
appears to be more a result of decreasing variance than of
bias. Of course, because P5M is design unbiased and
does not rely on a time dependent model, we know that this
is the case for P5M.

In table 2, ME2 shows the lowest mean squared differ-
ences overall. In addition, ME1 has a higher variance than
MAE and ME2 at the county level, because the sample
sizes were too small at the county level to fit the model. Two
observations support this statement. First, ME1 behaves
better at the county group level than at the county level.
Second, ME2, in which the model was fit at the survey unit
level and then applied at the lower levels, works well even
at the county level.

The second part of the study, the simulation in which we
randomly rearranged the plots, has led to unexpected,
albeit explainable results. The top graph in figure 2 shows
the mean squared difference from the truth for the 1,000
random arrangements of the 2,353 plots after being
grouped into 10 to 50 counties; the bottom graph gives the
corresponding mean differences. Note that although the
MAE of time 5 basal area still displays the expected bias, it
now compares favorably, in terms of mean squared error,
with ME2. ME2 can be expected to work best if the individual
county basal areas at times 1 through 4 have the same
values relative to the county basal areas at time 5 as
occurs globally over the entire survey unit. In a heteroge-
neous population, this condition is more likely to occur if
similar plots are spatially collocated. ME1 requires that the

Table 1—Mean difference—case study 
 
 
  County 
Estimator County  group 
 
 
Moving average estimator -2.026 -1.919 

Panel 5 mean  2.293  .024 

Mixed estimator, variation 1 -2.367  .027 

Mixed estimator, variation 2  .078  .159 
 

Table 2—Mean squared difference—case study 
 
 
  County 
Estimator  County  group 
 
 
Moving average estimator 12.586 4.305 

Panel 5 mean  314.065 8.963 

Mixed estimator, variation 1 98.350 2.470 

Mixed estimator, variation 2 9.128 .513 
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Figure 2—Mean squared difference (A) and mean difference (B) from the truth for 1,000 random arrangements of
the 2,353 plots after being grouped into 10 to 50 counties; i.e., sample size per county is decreasing from left to
right.

selected model be fit at the county level. This would be
advantageous if plots within counties were more homoge-
neous than between counties, and if there were a sufficient
number of plots in each county. These observations have
led to a search for spatial trends in the data.

In the top graph, figure 3 gives the aggregated mean
population basal areas for the data within grid cells of 20
miles on a side; in the bottom graph, it gives the residuals,
row, column, and all effects following a median polish of
this data. Tukey (1977) and Cressie (1991) explain the
median polish (also known as median sweep). Figure 4
gives the corresponding information following a coarse
mapping with 30-mile grid cells. In the bottom graph of both
figures, the row effect (far right column, save for the “all”
effect at the bottom) is a large, positive number at the top
and a not-quite-as-large, negative number at the bottom.
Although neither vector strictly decreases from top to
bottom, a trend does appear likely.

The top graph of figure 5 shows the classical estimates, as
well as the Cressie-Hawkins robust estimates (Cressie
and Hawkins 1980), of the north-south variograms for the
data in the top graph of figure 3. The bottom graph of figure
5 displays the corresponding estimates for the residuals in
figure 3. Likewise, figure 6 provides the same estimates for
the data in figure 4. Figure 5 illustrates the classic argu-
ment that the median polish removes spatial correlation

from the data, as the estimated variograms of the residuals
are decidedly flatter than those of the data. At first blush,
figure 6 seems to give quite the opposite impression; that
is, unless one ignores the values for the lag of six (equal to
180 miles). It is appropriate to ignore this lag since only a
single observation supported it and one end of the interval
happens to be in a row with only two observations. Ignoring
the lag 6 values, we see that the plots for the residuals are
slightly flatter than the plots for the data. In toto, figures 3
through 6 show that there is a north-south trend observable
at scales greater than or equal to 100 miles.

CONCLUSIONS
The FIA annual inventory design will provide a set of
sample observations of forest attributes that is thoroughly
diffused through space and time. This will allow estimation
of forest attributes for an almost-infinite set of subdomains
of interest. FIA cannot provide this extremely large set of
potential estimates; however, FIA could and should provide
a reasonable set of tools within an estimation system to
users accessing the data over the Internet. Such a system
would be more useful if it made reasoned use of data from
outside the domain of interest (i.e. the space-time cube
defined by a user) when that domain of interest is too small
to contain enough observations for the usual sample-
based estimators.
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Figure 3—Aggregated mean basal area (A) of the “true” population simulated from Georgia, Survey Unit 1 Forest
Inventory and Analysis data following a coarse mapping with a grid size of 20 miles on a side, plotted by an
arbitrary coordinate system. The bottom graph (B) shows the overall effect (bottom right), the column effects
(remainder of the bottom row), the row effects (remainder of the right column), and the residuals (remaining
values) following a median polish of the data in the top graph.

This study examines methods of making estimates over a
smaller domain than the sample within that domain will
actually support. The methods that use outside information
in different ways, MAE, ME1, and ME2, yield substantial
improvement in terms of squared error loss over P5M.
None of the alternative estimators, as applied to the small-
areas, however, can be shown to be design unbiased. In
the presence of increasing or decreasing trend, the
alternatives to the simple moving average have the poten-
tial of being model unbiased. For basal area, and presum-
ably all variables that are likely to exhibit trends over the 5-
year measurement period, even simplistic approaches to
modeling the trends can result in significant reductions in
MSE over the simple moving average.

These estimators (MAE, ME1, and ME2) use the same
information in different ways. That information comes only
from the FIA annual inventory data, although 80 percent
comes from outside of the domain of interest. Therefore,
comparisons between the methods are direct. On the other
hand, some methods that we have not discussed here
benefit from a rich history of external growth and yield
research. Mixed estimation, in general, represents a much
lower investment in human resources both initially and in
the long term than common industrial methods, which use
growth and mortality equations to update plot data. This

latter approach would be difficult for FIA to use because
appropriate growth models do not exist for many condition
classes of interest, and those that do exist would have to
undergo thorough testing for use in this context. In addition,
to ensure that the forest populations are not moving away
from those upon which the models were built, the growth
model predictions would have to be constantly monitored.

There are at least two ways to view any differences be-
tween Part 1, the case study, and Part 2, in which the plots
were randomly rearranged 1,000 times. Conducted over a
broader range of conditions, the simulation, on the one
hand, should be considered a more robust test of the
behaviors of the respective estimators. On the other hand,
the simulation disfavors estimators that draw strength from
spatial correlation, if that correlation exists in real popula-
tions. Any spatial correlation inherent in the data remained
intact in the case study but not in the simulation. The
results support this second viewpoint on a number of
fronts. For instance, the moving average estimator moved
up in ranking during the simulation relative to the case
study. Since spatial correlation would lead to stronger time
trends within counties, and the moving average estimator
would be at a disadvantage in the presence of a time trend,
a simulation ignoring potential spatial correlation might
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Figure 4—Aggregated mean basal area (A) of the “true” population simulated from Georgia, Survey Unit 1
Forest Inventory and Analysis data following a coarse mapping with a grid size of 30 miles on a side, plotted
by an arbitrary coordinate system. The bottom graph (B) shows the overall effect (bottom right), the column
effects (remainder of the bottom row), the row effects (remainder of the right column), and the residuals
(remaining values) following a median polish of the data in the top graph.

Figure 5—Classical and Cressie-Hawkins robust estimators of the north-south variograms for a grid
size of 20 miles on a side, for the aggregated data (A) and the residuals (B) following a north-south,
east-west median polish.
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garble any time trend enough to favor the moving average
estimator. Similarly, if a strong global time trend existed, in
the presence of strong spatial correlation at the county
level, the two applications of mixed estimation would
benefit. Therefore, we should not be surprised if they fare
better in the case study than in this particular simulation.

The spatial analysis established that the basal area data
did contain spatial correlation at relevant scales. Other
survey units, of a similar size and diversity, could also
exhibit spatial trends for this and probably other variables.
Therefore, modeling for both the potential spatial trends as
well as the potential temporal trends within survey units
could benefit small-area estimates. This gives further
credence to the call to FIA for the development of a GIS
based estimation system with the ability to adapt to user-
defined areas and periods of interest.
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